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A B S T R A C T   

Background: Public transportation is a major facilitator of the spread of infectious diseases and has been a focus of 
policy interventions aiming to suppress the current COVID-19 epidemic. 
Methods: We use a random-effects panel data model and a Difference-in-Differences in Reverse (DDR) model to 
examine how air and rail transport links with Wuhan as well as the suspension of these transport links influenced 
the development of the epidemic in China. 
Results: We find high-speed rail (HSR) and air connectivity with Wuhan resulted in 25.4% and 21.2% increases in 
the average number of daily new confirmed cases, respectively, while their suspension led to 18.6% and 13.3% 
decreases in that number. We also find that the suspension effect was dynamic, growing stronger over time and 
peaking 20–23 days after the Wuhan lockdown, then gradually wearing off. It took approximately four weeks for 
this effect to fully materialize, roughly twice the maximum incubation period, and similar dynamic patterns were 
seen in both HSR and air models. Overall, HSR had a greater impact on COVID-19 development than air 
transport. 
Conclusions: Our research provides important evidence for implementing transportation-related policies in 
controlling future infectious diseases.   

1. Introduction 

At the end of 2019, the first confirmed case of COVID-19 was re
ported in Wuhan, Hubei. Case numbers soon exploded due to the strong 
infectivity of this new coronavirus and the extensive travel by road, rail 
and air in China during the Spring Festival travel rush. Wuhan is located 
in central China and is a major transportation hub connecting many 
cities. These factors were highly conducive to the spread of the virus. To 
curb the spread, Wuhan and other cities in Hubei implemented a com
plete lockdown on January 23, shutting down all inter-city transport. 

Transportation networks accelerate the spread of viruses and disease 
[1–3]. Existing studies on the role of transportation networks in China’s 
COVID-19 outbreak fall into two broad categories: those that focus on 
the role of transportation in the domestic spread of COVID-19 before the 
Wuhan lockdown and those that examine the effect of lockdown policies 
and travel restrictions. Studies of the first kind have suggested that 
high-speed rail (HSR) played an important role in the spread of the virus. 
A preliminary study by Zhao et al., based on data from six cities, found 
that HSR connectivity is significantly and positively correlated with the 

spread of COVID-19, while no significant correlation was found for air 
and road connectivity [4]. The significance of HSR connectivity was 
corroborated by two recent studies. One study found that the connection 
of HSR with Wuhan led to a significantly higher total number of cu
mulative confirmed cases by February 6 [5]. Another study using a 
gravity model also found that HSR and flight frequencies from Wuhan 
had a significant impact on the total number of cumulative cases by 
February 15th in each city [6]. Meanwhile, research on the impact of 
lockdown measures and travel restrictions has found that such measures 
were effective in hindering the spread of the virus [7,8]. However, there 
are currently no studies that look comprehensively at the role of trans
portation in the development of COVID-19 in China. How did connec
tion to the epicenter of the outbreak via different transport networks 
speed up early-stage transmission? How did prevention and control 
measures such as suspending transportation networks help curb the 
spread of the virus? This paper examines the role of HSR and air travel in 
virus transmission from both of these angles. 

To evaluate the effect of the operation and suspension of transport 
links with Wuhan on virus transmission, we apply a random effects 
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panel data model and a Difference-in-Differences in Reverse (DDR) 
model [9], respectively. Two major government actions demarcate 
different sub-phases of our study. First, on January 20, the China Na
tional Health Commission confirmed the human-to-human trans
missibility of the novel coronavirus, and local governments began to 
take action to detect and suppress the virus. Second, on January 23, 
Wuhan implemented a complete lockdown; all inter-city transportation 
services, including flights, rail services and bus routes, were suspended, 
and all major freeway checkpoints leading out of the city were shut 
down. Based on these two government actions, we delineate two main 
phases (and a pre-phase) and estimate the impact of HSR and air travel 
on the development of the epidemic in each phase. The pre-phase refers 
to the period from January 11 to January 19, the day before the gov
ernment announcement of human-to-human transmissibility. During 
this phase, efforts to detect COVID-19 outside of Hubei province had not 
yet begun; therefore, the HSR and air connectivity effects are not 
measurable. We designate Phase One as the period from January 20 to 
February 6. In this period, the connectivity effects are measurable 
(widespread virus testing in different cities began on January 20) and 
case numbers potentially include cases directly imported from Wuhan. 
While travel between Wuhan and other cities ceased on January 23, 
given the 14-day incubation period of COVID-19, case numbers up until 
February 6 may still include directly imported cases. We designate 
February 7 as the beginning of Phase Two. At this point, case numbers 
should no longer reflect cases directly imported from Wuhan and the 
effect of suspending HSR and flight links with Wuhan can be fully 
measured. We choose February 24, one month after the lockdown of 
Wuhan, as the end of our study period. By this point, the situation in the 
mainland, outside of Hubei province, had stabilized [10]. Fig. 1 presents 
a timeline of the relevant events and phases of the study. 

2. Materials and methods 

2.1. Variables 

This study draws on data from 271 Chinese prefecture-level cities. 
The sample consists of 13,550 observations of 271 cities, covering the 50 
days from January 11 to February 29. As we study the effects of both 
HSR and air travel, there are two pairs of treatment and control groups. 
For HSR, a city is defined as treated if there are direct G-series or D-series 
trains1 running between the city and Wuhan; cities that require transfers 
to reach Wuhan or those without HSR stations are defined as ‘untreated’ 
and belong to the control group. For air transport, a city is defined as 
treated if there are direct flights between the city and Wuhan; those that 
require transfers or do not have airports are defined as the control group. 
The HSR treatment group consists of 117 cities and 5850 observations, 
while the air transport treatment group consists of 56 cities and 2800 
observations. 

Variables and data sources. The dependent variable in our models 
is the number of daily new confirmed cases in each city. The data were 
gathered from the Chinese Center for Disease Control and Prevention 
(China CDC). Explanatory variables include city-specific variables and 
city-time variant variables. City-specific variables include the HSR 
connectivity dummy, air connectivity dummy, highway distance from 
Wuhan and socio-economic indexes. The data come from a wide range of 
sources, including ticket booking websites, Baidu Map, the 2019 China 
City Yearbook and local government websites. We use GDP per capita 
and population density for 2018 as the measures of the socio-economic 
situation in different cities. City-time variant variables include popula
tion mobility, the weather situation and whether local control policies 
were implemented. Population mobility indexes are drawn from Baidu 
mobility data and include in-migration (IMI) and out-migration (OMI) 
indexes. We also control for the weather situation, including cities’ Air 
Quality Index, relative humidity and wind speed. The presence of 

Fig. 1. Timeline indicating important events and phases of the study.  

1 G-series trains represent high-speed railway service with a maximum speed 
of 350 km/h. D-series trains are the second fastest trains in China with speeds of 
up to 250 km/h and some of them can reach the speed of over 300 km/h. 
Together with the C-series train, these three kinds of trains all belong to China 
Railway High-speed (CRH) services. However, there is no C-series train con
necting Wuhan and cities out of Hubei province, this paper will only consider G- 
and D-series trains. 
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lockdown measures or transport restrictions is represented by a dummy 
variable indicating if a city had implemented local control policies2 at 
date t. Information about local COVID-19 control policies is drawn from 
two relevant studies [8,11] and was verified against announcements 
from government websites. Our sample includes 94 cities that imposed 
local epidemic suppression policies (see Appendix for the list of cities). 
Table 1 presents the summary statistics for the explanatory variables. 

2.2. Model specifications 

2.2.1. Connectivity effect 
In this paper, we quantify the effects of HSR and air connectivity on 

COVID-19 transmission in China by comparing the average daily new 
confirmed case numbers of the treated and control group cities between 
January 20 and February 6. We apply a random-effects panel data model 
as follows: 

ln
(
NewCasei,t

)
= β0 + β1TreatedHSRi + β2TreatedFlighti + β3Distancei

+ β4

∑19

k=0
RatioMoveIni,t− k + β5Weatheri,t + β6SocioEconi

+ vi + θt + εit

(1)  

where i denotes the city and t denotes the date. ln(NewCasei,t) is the 
logarithm of one plus the number of new confirmed cases in city i at date 
t. ​ TreatedHSRi is a dummy variable equal to one if there is direct HSR 
service between city i and Wuhan during the sampling peri
od. ​ TreatedFlighti 

is a dummy variable equal to one if there is direct flight 
service between city i and Wuhan during the sampling period. ​ Distancei 
is the highway distance between Wuhan and city i and serves as a proxy 
variable for road transportation. ​ RatioMoveIni,t− k represents the ratio 
of daily in-migration into city i over daily out-migration from city i k 

days before date t. The model also includes nineteen lag variables for the 

IMI-OMI ratio as some studies observe that population inflow from 
Wuhan 19 days before the analyzed date had a statistically significant 
impact on daily new confirmed case numbers [8]. ​ Weatheri,t is a list of 
control variables for weather situations, including the Air Quality Index, 
relative humidity and wind speed of city i at date t. ​ SocioEconi includes 
two major social-economic indexes: GDP per capita and population 
density. Variance inflation factors show that there is no 
multi-collinearity among the explanatory variables. vi captures the city 
random effect, which follows a Normal distribution vi ~ N (0, σ2

v ). 
Random effects panel data model assumes that vi is uncorrelated with 
the observed explanatory variables [12,13].θt captures all date-specific 
fixed effects. Finally, εit is the error term. The coefficient β1measures the 
HSR connectivity effect with other variables controlled, while β2 mea
sures the air connectivity effect. These two coefficients are the focus of 
the first part of the analysis. To check for robustness, we add a dummy 
variable indicating the implementation of local control policies six days 
before date t in city i to capture the suppression effect of these policies. 
We choose six days as the lag because the average incubation period for 
COVID-19 is 5–6 days [14]. Thus, we have Eq. (2): 

RE models assume that the observed predictors in the model are  

ln
(
NewCasei,t

)
= β0 + β1TreatedHSRi + β2TreatedFlighti + β3Distancei

+ β4

∑19

k=0
RatioMoveIni,t− k + β5Weatheri,t + β6SocioEconi

+ β7Restrictioni,t− 6 + vi + θt + εit

(2) 

To examine the variation in the HSR connectivity effect on cities of 
different distances from Wuhan, we replace the HSR connectivity vari
able with the interaction terms between this variable and the three 
distance dummies: D1 for a short distance of up to 500 km, D2 for a 
medium distance of 501–1000 km, and D3 for a long distance of over 
1000 km, all measured in great-circle distance from Wuhan. 

2.2.2. Suspension effect 
To measure the effect of suspending HSR and flight service with 

Wuhan, we use difference-in-differences in reverse (DDR) estimation 
and the dataset from January 20 to February 24. We estimate the 
following specifications for HSR and air travel. 

Eq. (3) captures how daily new confirmed case numbers responded 
to the suspension of HSR service, controlling for the effects of air and 

Table 1 
Summary statistics for the continuous control variables.   

Obs.   Mean (SD) 

MoveIn 
(unit) 

MoveOut 
(unit) 

AQI 
(unit) 

RHU1 
(%) 

WINms (m/ 
s) 

distance 
(kilometer) 

city_CapGDP (100∧2 
Yuan) 

city_den (persons/ 
sqkm) 

Full sample 13,550 0.777 0.786 74.302 70.465 2.132 1151.601 6.007 781.495 
(1.071) (1.619) (50.94) (15.85) (0.787) (673.961) (3.49) (659.5813) 

HSR-Treated 5850 1.079 1.136 73.531 74.014 2.121 848.935 7.258 972.837 
(1.322) (2.201) (53.06) (14.31) (0.811) (406.121) (3.805) (643.079) 

HSR-Control 7700 0.548 0.520 74.888 67.768 2.14 1381.548 5.057 636.124 
(0.754) (0.876) (49.26) (16.42) (0.768) (742.677) (2.888) (634.414) 

Flight- 
Treated 

2800 1.196 1.348 68.815 72.122 2.23 1165.409 8.606 893.343 
(1.424) (2.568) (52.22) (14.78) (0.849) (487.005) (3.822) (628.661) 

Flight- 
Control 

10,750 0.668 0.639 75.731 70.033 2.106 1148.004 5.330 752.362 
(0.928) (1.217) (50.5) (16.09) (0.768) (714.648) (3.054) (664.344)  

ln
(
NewCasei,t

)
=β0+β1(D1×TreatedHSRi )+β2(D2×TreatedHSRi )+β3(D3×TreatedHSRi )+β4TreatedFlighti+β5Distancei+β6

∑19

k=0
RatioMoveIni,t− k+β7Weatheri,t+

β8SocioEconi+β9Restrictioni,t+vi+θt+εit

(2.1)   

2 Local control policies might include (1) the shut-down of public trans
portation and prohibition of private cars; (2) or the set-up of checkpoints and 
quarantine zone; (3) or the ban on any gathering by residents; (4) or restriction 
of commercial activities or any combination of these measures. 
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road transportation (e.g., cars and buses): 

ln
(
NewCasei,t

)
= β0 + β1HSRi + β2Postt + β3DDR HSRi,t + β4Flighti

+ β5Distancei +
∑19

k=0
β6kRatioMoveIni,t− k + β7Weatheri,t + β8SocioEconi

+ β9Restrictioni,t + εit

(3)  

where HSRi is a dummy variable indicating if city i is directly connected 
with Wuhan by HSR. The intervention variable, DDR HSRi,t ​ , is coded as 
follows: 1) for cities connected with Wuhan before lockdown via HSR (or 
air), i.e. the treatment group, it takes the value of 0 during the pre- 
intervention period and 1 during the post-intervention period; 2) for 
cities not connected with Wuhan via HSR (or air) before lockdown, i.e. 
the control group, the intervention variable is always coded as 1 during 
the entire sampling period as these cities share the same status as the 
treatment group after the intervention. Note that the intervention date 
for our DDR model is set as February 7, the 15th day after Wuhan’s 
lockdown on Jan 23. Given the 14-day incubation period of COVID-19, 
all cases directly associated with travel from Wuhan should have been 
exposed by February 6. The coefficient β3measures the average effect of 
the suspension of HSR service on daily new confirmed case numbers and 
is the focus of the second part of the analysis. Flighti is a dummy variable 
equal to one if city i is connected with Wuhan via direct flight routes, 
which controls for the effect of air connectivity on the dependent vari
able during the sampling period. As in the connectivity model, the 
highway distance, IMI-OMI ratio, daily weather situation, social- 

economic indexes and implementation of local control policies are 
also included in the suspension model as control variables. θt captures 
all date-specific fixed effects, and εit is the error term. 

Eq. (4) is adopted from Eq. (3) with the HSR treatment and inter
vention variables replaced by the corresponding flight variables and the 
flight control variable replaced by the HSR counterpart. The equation 
analyzes the effect of flight suspension on the spread of COVID-19, 
controlling for the effects of HSR and road transport (e.g., cars and 
buses): 

ln
(
NewCasei,t

)
= β0 + β1Flighti + β2Postt + β3DDR Flighti,t + β4HSRi

+ β5Distancei +
∑19

k=0
β6kRatioMoveIni,t− k + β7Weatheri,t + β8SocioEconi

+ β9Restrictioni,t + εit

(4) 

To check for robustness, we modify Eq. (3) and Eq. (4) into Eq. (5) 
and Eq. (6) by replacing the post variable and all time-invariant city- 
specific characteristic variables with date dummies θt and city dummies 
ui: 

ln
(
NewCasei,t

)
= β0 + β1DDR HSRi,t +

∑19

k=0
β2kRatioMoveIni,t− k

+ β3Weatheri,t + β4Restrictioni,t + θt + ui + εit (5)  

Table 2 
Model results for HSR and flight connectivity effects.  

Lncase Model (1) Model (2) 

Connected via HSR before January 23 (dummy variable) 0.227*** (0.06) 0.227*** (0.06) 
Connected via flight routes before January 23 (dummy variable) 0.192** (0.09) 0.192** (0.09) 
Ratio of move-in index over move-out index 0.094** (0.04) 0.094** (0.04) 
Highway distance to Wuhan − 0.00018*** (0.00005) − 0.00018*** (0.00005) 
Air quality index − 0.00033* (0.00018) − 0.00033* (0.00018) 
Relative humidity − 0.002** (0.00) − 0.002** (0.00) 
Wind speed 0.011 (0.02) 0.011 (0.02) 
City GDP per capita 0.050*** (0.01) 0.050*** (0.01) 
City population density 0.00015*** (0.00005) 0.00015*** (0.00005) 
Presence of local pandemic control and restriction policies six days earlier (dummy variable)  0.038 (0.08) 
Time fixed effect Yes Yes 
City fixed effect No No 
Intercept − 0.510** (0.23) − 0.510** (0.23) 
N 4878 4878 
R-sq 0.32 0.32 

Notes: Standard errors are clustered at city level and shown in parentheses. 
Date dummies and the nineteen lag variables of population inflow ratio are not presented to save space. 
*p < 0.05; **p < 0.01; ***p < 0.001. 

Fig. 2. Impact of HSR connectivity over different distances.  

P. Zhu and Y. Guo                                                                                                                                                                                                                             



Travel Medicine and Infectious Disease 42 (2021) 102097

5

ln
(
NewCasei,t

)
= β0 + β1DDR Flighti,t +

∑19

k=0
β2kRatioMoveIni,t− k

+ β3Weatheri,t + β4Restrictioni,t + θt + ui + εit (6) 

As we did in the HSR connectivity model, we also adjust Eq. (5) to 
quantify the variation in the effect of HSR suspension over different 
distances:   

3. Results 

3.1. Connectivity effect 

Table 2 presents the coefficient estimates and standard errors for the 
two transportation variables and major control variables of interest. The 
nineteen lagged variables for the population inflow ratio3 are reported 
in the complete regression results in the Appendix. Model (1) in Table 2 
applies Eq. (1) to examine the effect of HSR and air transportation on the 
spread of COVID-19 using data between January 20 and February 6. 
Both HSR and air connectivity are shown to have a significant positive 
impact on the daily number of new confirmed cases. The coefficient for 

HSR shows that cities directly connected with Wuhan reported on 
average a 25.5% higher number of daily new confirmed cases than those 
not directly connected with Wuhan.4 The magnitude of the impact was 
smaller for air transport: on average, cities directly connected with 
Wuhan by air reported a 21.2% higher number of daily new confirmed 
cases than those not directly connected with Wuhan. To check for 
robustness, we control for the confounding effects of local pandemic 
control and restriction policies5 and modify Eq. (1) into Eq. (2) by 
adding a dummy variable indicating whether a city had implemented 
any local control measures six days earlier. Model (2) in Table 2 presents 
the robustness check results. The results are nearly unchanged compared 
to the baseline model, indicating that HSR connectivity increased the 
average daily number of new confirmed cases by 25.4%, while air 
connectivity increased case numbers by 21.2%. Thus, HSR and air 
transportation both had a significant effect on the COVID-19 epidemic in 
China, although the effect of HSR travel was slightly stronger than that 
of air travel. 

We further test whether the effect of HSR connectivity on virus 
transmission varied according to the distance of cities from Wuhan. 
Fig. 2 illustrates how the HSR connectivity effect differed for the 
different distance groups: HSR connectivity had a statistically significant 

Table 3 
Model results for HSR and flight suspension effects.     

with city- and date-fixed effects  

HSR 
Model (3) 

Flight Model (4) HSR 
Model (5) 

Flight 
Model (6) 

HSR suspension with Wuhan (dummy variable) − 0.252*** (0.04)  − 0.206*** (0.03)  
Flight suspension with Wuhan (dummy variable)  − 0.256*** (0.06)  − 0.143*** (0.05) 
Connected via HSR before January 23 (dummy variable) 0.049 (0.04) 0.175*** (0.05)   
Connected via Flight before January 23 (dummy variable) 0.116 (0.07) − 0.011 (0.06)   
Post: February 7 - February 23 (dummy variable) − 0.136*** (0.02) − 0.180*** (0.03)   
Ratio of move-in index over move-out index − 0.022 (0.04) − 0.020 (0.04) 0.047* (0.02) 0.048* (0.02) 
Highway distance to Wuhan − 0.0001*** 

(0.00003) 
− 0.0001*** 
(0.00003)   

Air quality index − 0.00039 (0.00030) − 0.00031 (0.00029) − 0.00002 
(0.00016) 

0.00007 
(0.00016) 

Relative humidity 0.003*** (0.00) 0.003*** (0.00) 0.002*** (0.00) 0.002*** (0.00) 
Wind speed 0.001 (0.02) 0.003 (0.02) 0.026*** (0.01) 0.030*** (0.01) 
City GDP per capita 0.036*** (0.01) 0.036*** (0.01)   
City population density 0.00012*** 

(0.00004) 
0.00012*** 
(0.00004)   

Presence of local pandemic control and restriction policies six days earlier (dummy 
variable) 

− 0.128** (0.05) − 0.137** (0.05) − 0.134*** (0.04) − 0.153*** (0.05) 

Time fixed effect No No Yes Yes 
City fixed effect No No Yes Yes 
Intercept 0.162 (0.11) 0.163 (0.11) 0.102 (0.07) 0.050 (0.07) 
N 9756 9756 9756 9756 
adj. R-sq 0.204 0.201 0.529 0.525 

Notes: Standard errors are clustered at city level and shown in parentheses. 
Date dummies and the nineteen lag variables of population inflow ratio are not presented to save space. 
*p < 0.05; **p < 0.01; ***p < 0.001. 

ln
(
NewCasei,t

)
=β0+β1

(
D1×DDR HSRi,t

)
+β2

(
D2×DDR HSRi,t

)
+β3

(
D3×DDR HSRi,t

)
+
∑19

k=0
β4kRatioMoveIni,t− k+β5Weatheri,t+β6Restrictioni,t+θt+ui+εit

(5.1)   

3 The models include nineteen lagged variables for the ratio of population 
inflow into each city, as some research suggests that population inflow from 
Wuhan nineteen days earlier had a significant impact on the spread of COVID- 
19 [8]. 

4 The percentage change of daily new confirmed cases for a discrete change in 
any dummy variable is calculated by 100∗

(
Y1 − Y0

Y0

)

= 100*(EXP(β) − 1).  
5 Such policies might include (1) the shut-down of public transportation and 

prohibition of private cars; (2) the establishment of checkpoints and quarantine 
zones; (3) bans on gatherings; (4) restriction of commercial activities. 
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impact on the development of COVID-19 in both short- (0–500 km) and 
medium- (501–1000 km) distance cities, but its impact on the long- 
distance (over 1001 km) group was not statistically significant. HSR 
connectivity increased average daily new confirmed cases by 50.2% for 
short-distance cities and 18.8% for medium-distance cities. The contri
bution of HSR connectivity to virus transmission thus seems to decline 
substantially with distance. 

Among the control variables, highway distance from Wuhan also had 
a strong negative impact on the spread of COVID-19: an increase of 100 
km in highway distance was associated with a 1.8% reduction in the 
average daily cases. With longer highway distances and hence longer 
driving times, people are increasingly likely to prefer HSR or air to bus or 
car transport. Therefore, highway distance is a good proxy for passenger 
inflows from Wuhan via inter-city highways and can be used to account 
for the potential confounding effects of other transportation modes (i.e. 
inter-city buses, private cars and taxis), ensuring our estimates of HSR 
and air connectivity effects are unbiased. Also of interest is the “local 
pandemic control restriction policies” variable. Its coefficient estimate is 
not statistically significant, suggesting the effects of these policies on 
virus transmission had not materialized during the time frame analyzed. 

3.2. Suspension effect 

We employ the DDR approach to model how daily new confirmed 
case numbers responded to the suspension of HSR and air transport with 
Wuhan between February 7 and February 24. The intervention date is 
set as February 7, the 15th day after the lockdown of Wuhan on Jan 23. 
Models (3) and (4) in Table 3 present the coefficient estimates for major 
variables of interest. Full regression results are provided in Appendix. 
We find that shutting down transport links indeed curbed the spread of 
COVID-19 out of Wuhan: suspending HSR and flight links caused a 
significant reduction in daily new confirmed cases. On average, sus
pending HSR service with Wuhan caused a 22.2% decrease in daily new 
confirmed cases, ceteris paribus. Suspending flight service caused a 
22.6% reduction. 

We conduct a robustness check by modifying Eq. (3) and Eq. (4) into 
Eq. (5) and Eq. (6), adding stricter controls by replacing the treatment 
variable, post variable and all time-invariant city-specific characteristic 
variables with date dummies θt and city dummies ui to capture all time- 
specific and city-specific fixed effects. Models (5) and (6) show higher 
levels of statistical significance for several predictor variables and a 
smaller magnitude of impact for the key transportation variables relative 
to models (3) and (4). According to the modified model, suspension of 
HSR service with Wuhan reduced average daily cases by 18.6%, while 
suspending flight service decreased average daily cases by 13.3%. 

We also examine how the HSR suspension effect varied with distance 
from Wuhan. Fig. 3 plots the coefficients and 95% confidence intervals 
for these interaction terms. The variation of the HSR suspension effect 

over distance demonstrates a pattern similar to the connectivity effect: 
suspension led to a significant drop in average daily cases in both short- 
and medium-distance cities, but had little impact in long-distance cities. 
Suspension of HSR links with Wuhan caused a 22.4% reduction in 
average daily cases in short-distance cities and a 20.5% reduction in 
medium-distance cities. 

Among the control variables, the coefficient for the “local pandemic 
control and restriction policies” variable captures the impact of local 
restrictive measures. Models (3) through (6) show that control policies 
had a strong negative impact on the number of daily new confirmed 
cases, in contrast to the results of models (1) and (2). The in-migration 
index (IMI) to out-migration index (OMI) ratio also shows a significant 
positive correlation with daily new confirmed cases in models (5) and 
(6), after time-fixed effects are controlled for: a one-unit increase in this 
ratio is associated with a 5% increase in daily cases. This is however 
smaller than the 9% increase observed in the two connectivity effect 
models. Meanwhile, the coefficients for the “Highway distance to 
Wuhan” variable are consistent with those from Eq. (1) and Eq. (2) in 
terms of their signs and statistical significance, but are of much smaller 
magnitude too. These differences may be attributable to the difference in 
sampling periods of the connectivity effect and suspension effect 
models. The connectivity effect models draw on data from January 20 to 
February 6, the period just before and after Wuhan went into lockdown, 
when many cities were only just beginning to implement local control 
policies. The suppression effects of local control policies may have had a 
limited impact in this period, while population inflow and highway 
connections with Wuhan would likely have exerted a larger influence on 
the spread of COVID-19. The suspension effect models analyze the 
period from February 7 to February 24, when Wuhan’s lockdown 
measures and local control policies had been in effect for some time. 
Thus, the suppression effects of local control measures would have had 
more time to take hold, and the effects of population inflow and highway 
connections with Wuhan would have been weakened. 

3.3. Dynamic suspension effect 

We further analyze whether suspension effects were dynamic and 
evolved over time. We added three lags and seven leads6 of the inter
vention variable to test the lead and lag effects of the suspension of HSR 
or air travel. To avoid the problem of multi-collinearity and include as 
many variables as possible, the models take a lag length of three days 
instead of one day (results for lag lengths of one day and two days are 

Fig. 3. Impact of HSR suspension over different distances.  

6 During the sampling period between Jan 20th and Feb 24th, all lagged 
variables with a lag of 18 days or more after Feb 7th will become zero and be 
omitted in regression. Therefore, in order to include the extra two lagged 
variables (18 days and 21 days after Feb 7th), the regression models examining 
the dynamic effect have extended the sampling period to Feb 29th. 
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attached in Appendix for reference). Fig. 4 plots the coefficients and 
95% confidence intervals for the lead and lag variables. Panel A and 
Panel B in Fig. 4 illustrate the dynamic impact of HSR suspension based 
on Eq. (3) and Eq. (5), respectively. In Panel A, all of the lag variables 
after the intervention have significantly negative coefficients, and their 
magnitude is largest between three and nine days after the intervention. 
In Panel B, most of the lag variables demonstrate patterns similar to 
Panel A, but with smaller magnitudes and statistically insignificant co
efficients for the 12-, 18- and 21-day lag variables. Panel C and Panel D 
present the dynamic effect of air transport suspension based on Eq. (4) 
and Eq. (6), respectively. All coefficients for the lag variables of air 
transport suspension are statically significant and negative in Panel C, 
and the time trend is quite similar to that of HSR suspension in Panel A. 
However, weaker results are obtained with Eq. (5), as shown in Panel D. 

Panels A and C suggest that HSR and air travel suspension had similar 

dynamic effects. Panel A shows that it took time for the suppression 
effects of suspending HSR service to manifest, and that the reduction in 
daily new confirmed cases was not observed until the third day after the 
selected intervention date of February 7 (one maximum incubation 
period, or 14 days, after the lockdown). This impact grew stronger over 
time, peaked between six and nine days after the intervention, and then 
gradually wore off. Panel C shows that the flight suspension effect had a 
similar dynamic pattern: it started to increase on the third day after the 
intervention and peaked between six and nine days after the interven
tion. Although the suspension effects for both HSR and air travel were 
statistically significant for some time after the peak (as shown in Panels 
A and C), they approached zero (numerically) on the twelfth or the fif
teenth day after the intervention and remained afterwards. 

3.4. Parallel trend assumption 

DDR estimation requires that the treatment group should develop in 
parallel with the control group after the effect of the intervention wears 
off [9]. While the coefficients for the lag variables in Fig. 4 have already 
indicated that the suspension effect diminishes, we also verify this 
parallel trend assumption visually. Fig. 5 depicts average daily cases for 
cities with HSR (Fig. 5A) or flight (Fig. 5B) connection to Wuhan versus 
those without. The red lines represent the treatment group and the blue 
lines represent the control group. The figures show that for both the HSR 
and flight models, the treatment and control groups have similar 
date-fixed effects pre-intervention (before January 19) and one month 
after the lockdown (after February 23), indicating the parallel trend 
assumption is satisfied. The figures also suggest that by February 23, the 
suspension effects had neutralized the connectivity effects and the 
treatment and control groups were evolving in parallel. 

4. Discussion 

Our study provides a comprehensive view of the relationships be
tween COVID-19 transmission and transportation networks, focusing on 
both the connectivity and suspension effects of HSR and air trans
portation. Our findings in general resonate with similar studies on 
earlier outbreaks, such as H1N1 [2,15], Ebola [16], and SARS [17]. 
Transportation networks, including rail, air transport and buses, facili
tates the virus transmission to new regions and leads to outbreaks [2,17, 
18]. In the case of COVID-19, our results on the connectivity/connection 
effects are generally consistent with previous studies concerning the 
impacts of HSR connection with the epicenter of the COVID-19 outbreak 
[4–6]. Furthermore, our analysis of flight connections adds to the dis
cussion concerning the role of air transportation in COVID-19 spread, 
given that there is contradictory evidence about the relationship be
tween aviation and COVID-19 [4,6]. More importantly, our research 
contributes to the literature on future novel infectious disease (NID) 
control by estimating how quickly suspension of transportation net
works from the epicenter can help reduce COVID-19 transmission at a 
national scale, and how the suspension effects differ between HSR and 
air. 

First, from our connectivity and suspension models, we can infer that 
HSR and air transport links both significantly influenced the develop
ment of COVID-19 in China: both HSR and air connectivity with Wuhan 
led to a significantly higher number of daily new confirmed cases, while 
suspension of HSR and flight services both led to a significant decrease in 
daily cases. This has implications not only for controlling the current 
COVID-19 outbreak, but also for controlling the spread of any emerging 
infectious diseases in the future. Our study provides evidence that pol
icymakers should work closely with the transportation sector whenever 
there are outbreaks of severe infectious diseases, as suspension of HSR 
and air transport links is an effective means of suppressing disease 
transmission. While such measures are likely to be unwarranted except 
in extreme cases, policymakers can also work closely with railways, 
airlines and airports to monitor traffic inflows from any epicentres of 

Fig. 4. Impact of transport suspension over time.  
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disease. Setting up checkpoints in railway stations and airports to detect 
infected passengers and upgrading ventilation systems in trains, planes, 
train stations and airports are potential measures that could weaken the 
connectivity effects. 

Second, in all models, the suspension effects were of smaller 
magnitude than the connectivity effects, suggesting that even complete 
suspension of transport links was insufficient to fully counteract the 
negative impact of earlier connectivity to the center of the outbreak. 
This may be due to the fact that connectivity effects had already 
generated a large number of cases locally, leading to higher rates of local 
transmission that could not be fully counteracted just by suspending 
transport links, suggesting that early intervention is imperative. 

Third, HSR was associated with stronger amplifying effects on the 
COVID-19 outbreak than air. Connectivity effects were of larger 
magnitude for HSR than for air transport, and suspension effects were 
also more pronounced for HSR. The stronger connectivity effect was 
likely due to the fact HSR has a larger passenger capacity than air 
transport and plays a more important role in the domestic transportation 
network [20–22]. Thus policymakers should focus in particular on 
working with railways to control the spread of disease. While it is 
important for both HSR and air transport service providers to take 

preventative actions in the face of an epidemic, governments should 
prioritize HSR when allocating resources for epidemic control, and if the 
suspension of transport services is necessary, prioritize the suspension of 
HSR over the suspension of flight services to minimize non-essential 
travel. Certainly, this may cause equity issues as air travel is typically 
more expensive than HSR. 

Fourth, our results indicate that the HSR connectivity effect dimin
ished with greater distance from the epicentre of the outbreak. The HSR 
connectivity effect was strongest for cities a short distance from Wuhan 
(0–500 km) and was significantly weaker for medium-distance cities 
(501–1000 km); there was no significant effect for cities in the long- 
distance (over 1000 km) group. Suspension effects followed a similar 
pattern. This may be partially explained by different frequencies of train 
service to cities of different distances from Wuhan. We used train 
schedule information from the official China Railway website to calcu
late the average frequency of train service from and to Wuhan for each 
distance group between August 8 and August 13, 2020, when train 
service had fully resumed. The frequency data are consistent with the 
regression results: Group 1 (0–500 km) had the highest frequency of 
train service to and from Wuhan with an average train frequency of 19.2, 
followed by Group 2 (501–1000 km) with a frequency of 8.61, while 

Fig. 5. Evolution of average new confirmed cases for cities.  
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Group 3 (>1000 km) had the lowest average frequency of 3.5. The 
stronger effect of HSR connectivity on COVID-19 case numbers in cities 
closer to Wuhan can therefore be partially explained by the frequency of 
train service with Wuhan. 

Lastly, we want to acknowledge two limitations. First, when esti
mating the connectivity effects of transportation networks, the inclusion 
of detailed frequencies of HSR trains and flights could have provided 
more precise estimates on their marginal effects. However, as such daily 
scheduling data is not available to us, we instead use dummy variables 
representing HSR and flight connectivity to capture the influence of 
transport connections. If available, future research is encouraged to use 
detailed scheduling data for more precise results. For models on the 
suspension effects, there were no more trains or flights scheduled after 
the Wuhan lockdown, hence it is most appropriate to use dummy vari
ables to indicate suspension status. 

Second, as discussed above, we use highway distance to Wuhan as a 
proxy for passenger inflows from Wuhan via road networks, with the 
purpose of ruling out the influence of transportation modes other than 
HSR or flights, such as inter-city buses, private cars and taxis. We un
derstand it might not be the best measure of road transportation (buses, 
private cars or taxi), as it does not directly reflect the actual number of 
passengers via bus services or cars. However, passenger capacity of 
inter-city buses services is highly correlated with the highway distance 
between cities as it influences travel demand. Travel needs via private 
cars are less predictable, but this general trend is arguably still valid. Our 
connectivity models indicate that longer highway distance lead to fewer 
average daily confirmed cases. Hence, we believe it provides a good 
approximation of the magnitude of the road transportation impact. Note 
that our study mainly focuses on the roles of HSR and air travel. In future 
research that aims to provide more accurate estimates about the impacts 
of road transportation on infectious disease transmission and control, 
detailed data on the daily number of passengers travelled via road net
works should be used. This would have important and more direct im
plications for many developing countries, where collective public 
transport using buses is more common, air travel is expensive, and HSR 
or rail transport is limited. 

In conclusion, our study sheds light on the effectiveness and time 
efficiency of transportation suspension in disease control and has policy 
implications for transportation-related risk management in future pan
demics. Early interventions and decisive action to impose travel re
strictions when necessary are imperative to successfully impede the 
epidemic progression. Our results show that transportation suspension is 
indeed effective in curbing the virus spread, but it takes time for the 
effects to take place. Conditional on other local prevention and control 
measures, the time needed for suspension effects to fully materialize was 
almost twice the maximum incubation period. Admittedly, travel re
strictions can be costly, exacerbating the economic shock caused by the 
epidemic and disproportionately hurting the poor and low-skilled. As a 
matter of fact, China had gone through a major economic contraction in 
the first quarter of 2020, with an acute and sharp reduction in GDP, fixed 
asset investment and employment rates [19]. However, swift suspension 
of transportation networks to the epicenter can minimize a nation’s 
economic disruption, help other cities win time to implement preven
tative and control measures, and thereby aid a speedy economic re
covery. This is one of the main reasons that China has only suffered for a 
relatively short time frame from the pandemic. China’s GDP rebounded 
in the second quarter of 2020 and its growth rate reached 6.5% in the 
fourth quarter, 0.5% higher than the same period in 2019. This provides 
valuable lessons for other developing countries to overcome the current 
crisis.. 
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